DevOps & CloudDocumentedScanned

agent-framework-azure-ai-py

Build Azure AI Foundry agents using the Microsoft Agent Framework Python SDK (agent-framework-azure-ai).

Share:

Installation

npx clawhub@latest install agent-framework-azure-ai-py

View the full skill documentation and source below.

Documentation

Agent Framework Azure Hosted Agents

Build persistent agents on Azure AI Foundry using the Microsoft Agent Framework Python SDK.

Architecture

User Query → AzureAIAgentsProvider → Azure AI Agent Service (Persistent)
                    ↓
              Agent.run() / Agent.run_stream()
                    ↓
              Tools: Functions | Hosted (Code/Search/Web) | MCP
                    ↓
              AgentThread (conversation persistence)

Installation

# Full framework (recommended)
pip install agent-framework --pre

# Or Azure-specific package only
pip install agent-framework-azure-ai --pre

Environment Variables

export AZURE_AI_PROJECT_ENDPOINT=""
export AZURE_AI_MODEL_DEPLOYMENT_NAME="gpt-4o-mini"
export BING_CONNECTION_ID="your-bing-connection-id"  # For web search

Authentication

from azure.identity.aio import AzureCliCredential, DefaultAzureCredential

# Development
credential = AzureCliCredential()

# Production
credential = DefaultAzureCredential()

Core Workflow

Basic Agent

import asyncio
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential

async def main():
    async with (
        AzureCliCredential() as credential,
        AzureAIAgentsProvider(credential=credential) as provider,
    ):
        agent = await provider.create_agent(
            name="MyAgent",
            instructions="You are a helpful assistant.",
        )
        
        result = await agent.run("Hello!")
        print(result.text)

asyncio.run(main())

Agent with Function Tools

from typing import Annotated
from pydantic import Field
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential

def get_weather(
    location: Annotated[str, Field(description="City name to get weather for")],
) -> str:
    """Get the current weather for a location."""
    return f"Weather in {location}: 72°F, sunny"

def get_current_time() -> str:
    """Get the current UTC time."""
    from datetime import datetime, timezone
    return datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S UTC")

async def main():
    async with (
        AzureCliCredential() as credential,
        AzureAIAgentsProvider(credential=credential) as provider,
    ):
        agent = await provider.create_agent(
            name="WeatherAgent",
            instructions="You help with weather and time queries.",
            tools=[get_weather, get_current_time],  # Pass functions directly
        )
        
        result = await agent.run("What's the weather in Seattle?")
        print(result.text)

Agent with Hosted Tools

from agent_framework import (
    HostedCodeInterpreterTool,
    HostedFileSearchTool,
    HostedWebSearchTool,
)
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential

async def main():
    async with (
        AzureCliCredential() as credential,
        AzureAIAgentsProvider(credential=credential) as provider,
    ):
        agent = await provider.create_agent(
            name="MultiToolAgent",
            instructions="You can execute code, search files, and search the web.",
            tools=[
                HostedCodeInterpreterTool(),
                HostedWebSearchTool(name="Bing"),
            ],
        )
        
        result = await agent.run("Calculate the factorial of 20 in Python")
        print(result.text)

Streaming Responses

async def main():
    async with (
        AzureCliCredential() as credential,
        AzureAIAgentsProvider(credential=credential) as provider,
    ):
        agent = await provider.create_agent(
            name="StreamingAgent",
            instructions="You are a helpful assistant.",
        )
        
        print("Agent: ", end="", flush=True)
        async for chunk in agent.run_stream("Tell me a short story"):
            if chunk.text:
                print(chunk.text, end="", flush=True)
        print()

Conversation Threads

from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential

async def main():
    async with (
        AzureCliCredential() as credential,
        AzureAIAgentsProvider(credential=credential) as provider,
    ):
        agent = await provider.create_agent(
            name="ChatAgent",
            instructions="You are a helpful assistant.",
            tools=[get_weather],
        )
        
        # Create thread for conversation persistence
        thread = agent.get_new_thread()
        
        # First turn
        result1 = await agent.run("What's the weather in Seattle?", thread=thread)
        print(f"Agent: {result1.text}")
        
        # Second turn - context is maintained
        result2 = await agent.run("What about Portland?", thread=thread)
        print(f"Agent: {result2.text}")
        
        # Save thread ID for later resumption
        print(f"Conversation ID: {thread.conversation_id}")

Structured Outputs

from pydantic import BaseModel, ConfigDict
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential

class WeatherResponse(BaseModel):
    model_config = ConfigDict(extra="forbid")
    
    location: str
    temperature: float
    unit: str
    conditions: str

async def main():
    async with (
        AzureCliCredential() as credential,
        AzureAIAgentsProvider(credential=credential) as provider,
    ):
        agent = await provider.create_agent(
            name="StructuredAgent",
            instructions="Provide weather information in structured format.",
            response_format=WeatherResponse,
        )
        
        result = await agent.run("Weather in Seattle?")
        weather = WeatherResponse.model_validate_json(result.text)
        print(f"{weather.location}: {weather.temperature}°{weather.unit}")

Provider Methods

MethodDescription
create_agent()Create new agent on Azure AI service
get_agent(agent_id)Retrieve existing agent by ID
as_agent(sdk_agent)Wrap SDK Agent object (no HTTP call)

Hosted Tools Quick Reference

ToolImportPurpose
HostedCodeInterpreterToolfrom agent_framework import HostedCodeInterpreterToolExecute Python code
HostedFileSearchToolfrom agent_framework import HostedFileSearchToolSearch vector stores
HostedWebSearchToolfrom agent_framework import HostedWebSearchToolBing web search
HostedMCPToolfrom agent_framework import HostedMCPToolService-managed MCP
MCPStreamableHTTPToolfrom agent_framework import MCPStreamableHTTPToolClient-managed MCP

Complete Example

import asyncio
from typing import Annotated
from pydantic import BaseModel, Field
from agent_framework import (
    HostedCodeInterpreterTool,
    HostedWebSearchTool,
    MCPStreamableHTTPTool,
)
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential

def get_weather(
    location: Annotated[str, Field(description="City name")],
) -> str:
    """Get weather for a location."""
    return f"Weather in {location}: 72°F, sunny"

class AnalysisResult(BaseModel):
    summary: str
    key_findings: list[str]
    confidence: float

async def main():
    async with (
        AzureCliCredential() as credential,
        MCPStreamableHTTPTool(
            name="Docs MCP",
            url="",
        ) as mcp_tool,
        AzureAIAgentsProvider(credential=credential) as provider,
    ):
        agent = await provider.create_agent(
            name="ResearchAssistant",
            instructions="You are a research assistant with multiple capabilities.",
            tools=[
                get_weather,
                HostedCodeInterpreterTool(),
                HostedWebSearchTool(name="Bing"),
                mcp_tool,
            ],
        )
        
        thread = agent.get_new_thread()
        
        # Non-streaming
        result = await agent.run(
            "Search for Python best practices and summarize",
            thread=thread,
        )
        print(f"Response: {result.text}")
        
        # Streaming
        print("\nStreaming: ", end="")
        async for chunk in agent.run_stream("Continue with examples", thread=thread):
            if chunk.text:
                print(chunk.text, end="", flush=True)
        print()
        
        # Structured output
        result = await agent.run(
            "Analyze findings",
            thread=thread,
            response_format=AnalysisResult,
        )
        analysis = AnalysisResult.model_validate_json(result.text)
        print(f"\nConfidence: {analysis.confidence}")

if __name__ == "__main__":
    asyncio.run(main())

Conventions

  • Always use async context managers: async with provider:
  • Pass functions directly to tools= parameter (auto-converted to AIFunction)
  • Use Annotated[type, Field(description=...)] for function parameters
  • Use get_new_thread() for multi-turn conversations
  • Prefer HostedMCPTool for service-managed MCP, MCPStreamableHTTPTool for client-managed

Reference Files

  • references/tools.md: Detailed hosted tool patterns
  • references/mcp.md: MCP integration (hosted + local)
  • references/threads.md: Thread and conversation management
  • references/advanced.md: OpenAPI, citations, structured outputs