Search & ResearchDocumentedScanned

anshumanbh-qmd

Search markdown knowledge bases efficiently using.

Share:

Installation

npx clawhub@latest install anshumanbh-qmd

View the full skill documentation and source below.

Documentation

QMD Search Skill

Search markdown knowledge bases efficiently using qmd, a local indexing tool that uses BM25 + vector embeddings to return only relevant snippets instead of full files.

Why Use This

  • 96% token reduction - Returns relevant snippets instead of reading entire files
  • Instant results - Pre-indexed content means fast searches
  • Local & private - All indexing and search happens locally
  • Hybrid search - BM25 for keyword matching, vector search for semantic similarity

Commands

Search (BM25 keyword matching)

qmd search "your query" --collection <name>
Fast, accurate keyword-based search. Best for specific terms or phrases.

Vector Search (semantic)

qmd vsearch "your query" --collection <name>
Semantic similarity search. Best for conceptual queries where exact words may vary.

Hybrid Search (both + reranking)

qmd hybrid "your query" --collection <name>
Combines both approaches with LLM reranking. Most thorough but often overkill.

How to Use

  • Check if collection exists:

  • qmd collection list

  • Search the collection:

  • # For specific terms
       qmd search "api authentication" --collection notes
    
       # For conceptual queries
       qmd vsearch "how to handle errors gracefully" --collection notes

  • Read results: qmd returns relevant snippets with file paths and context
  • Setup (if qmd not installed)

    # Install qmd
    bun install -g 
    
    # Add a collection (e.g., Obsidian vault)
    qmd collection add ~/path/to/vault --name notes
    
    # Generate embeddings for vector search
    qmd embed --collection notes

    Invocation Examples

    /qmd api authentication          # BM25 search for "api authentication"
    /qmd how to handle errors --semantic   # Vector search for conceptual query
    /qmd --setup                     # Guide through initial setup

    Best Practices

    • Use BM25 search (qmd search) for specific terms, names, or technical keywords
    • Use vector search (qmd vsearch) when looking for concepts where wording may vary
    • Avoid hybrid search unless you need maximum recall - it's slower
    • Re-run qmd embed after adding significant new content to keep vectors current

    Handling Arguments

    • $ARGUMENTS contains the full search query
    • If --semantic flag is present, use qmd vsearch instead of qmd search
    • If --setup flag is present, guide user through installation and collection setup
    • If --collection is specified, use that collection; otherwise default to checking available collections

    Workflow

  • Parse arguments from $ARGUMENTS

  • Check if qmd is installed (which qmd)

  • If not installed, offer to guide setup

  • If searching:

  • - List collections if none specified
    - Run appropriate search command
    - Present results to user with file paths
  • If user wants to read a specific result, use the Read tool on the file path