Search & ResearchDocumentedScanned
anshumanbh-qmd
Search markdown knowledge bases efficiently using.
Share:
Installation
npx clawhub@latest install anshumanbh-qmdView the full skill documentation and source below.
Documentation
QMD Search Skill
Search markdown knowledge bases efficiently using qmd, a local indexing tool that uses BM25 + vector embeddings to return only relevant snippets instead of full files.
Why Use This
- 96% token reduction - Returns relevant snippets instead of reading entire files
- Instant results - Pre-indexed content means fast searches
- Local & private - All indexing and search happens locally
- Hybrid search - BM25 for keyword matching, vector search for semantic similarity
Commands
Search (BM25 keyword matching)
qmd search "your query" --collection <name>
Fast, accurate keyword-based search. Best for specific terms or phrases.
Vector Search (semantic)
qmd vsearch "your query" --collection <name>
Semantic similarity search. Best for conceptual queries where exact words may vary.
Hybrid Search (both + reranking)
qmd hybrid "your query" --collection <name>
Combines both approaches with LLM reranking. Most thorough but often overkill.
How to Use
qmd collection list
# For specific terms
qmd search "api authentication" --collection notes
# For conceptual queries
qmd vsearch "how to handle errors gracefully" --collection notes
Setup (if qmd not installed)
# Install qmd
bun install -g
# Add a collection (e.g., Obsidian vault)
qmd collection add ~/path/to/vault --name notes
# Generate embeddings for vector search
qmd embed --collection notes
Invocation Examples
/qmd api authentication # BM25 search for "api authentication"
/qmd how to handle errors --semantic # Vector search for conceptual query
/qmd --setup # Guide through initial setup
Best Practices
- Use BM25 search (
qmd search) for specific terms, names, or technical keywords - Use vector search (
qmd vsearch) when looking for concepts where wording may vary - Avoid hybrid search unless you need maximum recall - it's slower
- Re-run
qmd embedafter adding significant new content to keep vectors current
Handling Arguments
$ARGUMENTScontains the full search query- If
--semanticflag is present, useqmd vsearchinstead ofqmd search - If
--setupflag is present, guide user through installation and collection setup - If
--collectionis specified, use that collection; otherwise default to checking available collections
Workflow
$ARGUMENTSwhich qmd)- List collections if none specified
- Run appropriate search command
- Present results to user with file paths