Marketing & SalesDocumentedScanned

deepread

OCR that never fails silently.

Share:

Installation

npx clawhub@latest install deepread

View the full skill documentation and source below.

Documentation

DeepRead - Production OCR API

OCR that never fails silently. Process PDFs and extract structured data with AI-powered confidence scoring that tells you exactly which fields need human review.

What This Skill Does

DeepRead is a production-grade document processing API that reduces human review from 100% to ~10% through intelligent quality assessment.

Core Features:

  • Text Extraction: Convert PDFs to clean markdown

  • Structured Data: Extract JSON fields with confidence scores

  • Quality Flags: AI determines which fields need human verification (hil_flag)

  • Multi-Pass Processing: Multiple validation passes for maximum accuracy

  • Multi-Model Consensus: Cross-validation between models for reliability

  • Free Tier: 2,000 pages/month (no credit card required)


Setup

1. Get Your API Key

Sign up and create an API key:

# Visit the dashboard

# Or use this direct link

Save your API key:

export DEEPREAD_API_KEY="sk_live_your_key_here"

2. Clawdbot Configuration (Optional)

Add to your clawdbot.config.json5:

{
  skills: {
    entries: {
      "deepread": {
        enabled: true,
        apiKey: "sk_live_your_key_here"
      }
    }
  }
}

3. Process Your First Document

Option A: With Webhook (Recommended)

# Upload PDF with webhook notification
curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@document.pdf" \
  -F "webhook_url="

# Returns immediately
{
  "id": "550e8400-e29b-41d4-a716-446655440000",
  "status": "queued"
}

# Your webhook receives results when processing completes (2-5 minutes)

Option B: Poll for Results

# Upload PDF without webhook
curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@document.pdf"

# Returns immediately
{
  "id": "550e8400-e29b-41d4-a716-446655440000",
  "status": "queued"
}

# Poll until completed
curl  \
  -H "X-API-Key: $DEEPREAD_API_KEY"

Usage Examples

Basic OCR (Text Only)

Extract text as clean markdown:

# With webhook (recommended)
curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@invoice.pdf" \
  -F "webhook_url="

# OR poll for completion
curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@invoice.pdf"

# Then poll
curl  \
  -H "X-API-Key: $DEEPREAD_API_KEY"

Response when completed:

{
  "id": "550e8400-...",
  "status": "completed",
  "result": {
    "text": "# INVOICE\n\n**Vendor:** Acme Corp\n**Total:** $1,250.00..."
  }
}

Structured Data Extraction

Extract specific fields with confidence scoring:

curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@invoice.pdf" \
  -F 'schema={
    "type": "object",
    "properties": {
      "vendor": {
        "type": "string",
        "description": "Vendor company name"
      },
      "total": {
        "type": "number",
        "description": "Total invoice amount"
      },
      "invoice_date": {
        "type": "string",
        "description": "Invoice date in MM/DD/YYYY format"
      }
    }
  }'

Response includes confidence flags:

{
  "status": "completed",
  "result": {
    "text": "# INVOICE\n\n**Vendor:** Acme Corp...",
    "data": {
      "vendor": {
        "value": "Acme Corp",
        "hil_flag": false,
        "found_on_page": 1
      },
      "total": {
        "value": 1250.00,
        "hil_flag": false,
        "found_on_page": 1
      },
      "invoice_date": {
        "value": "2024-10-??",
        "hil_flag": true,
        "reason": "Date partially obscured",
        "found_on_page": 1
      }
    },
    "metadata": {
      "fields_requiring_review": 1,
      "total_fields": 3,
      "review_percentage": 33.3
    }
  }
}

Complex Schemas (Nested Data)

Extract arrays and nested objects:

curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@invoice.pdf" \
  -F 'schema={
    "type": "object",
    "properties": {
      "vendor": {"type": "string"},
      "total": {"type": "number"},
      "line_items": {
        "type": "array",
        "items": {
          "type": "object",
          "properties": {
            "description": {"type": "string"},
            "quantity": {"type": "number"},
            "price": {"type": "number"}
          }
        }
      }
    }
  }'

Page-by-Page Breakdown

Get per-page OCR results with quality flags:

curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@contract.pdf" \
  -F "include_pages=true"

Response:

{
  "result": {
    "text": "Combined text from all pages...",
    "pages": [
      {
        "page_number": 1,
        "text": "# Contract Agreement\n\n...",
        "hil_flag": false
      },
      {
        "page_number": 2,
        "text": "Terms and C??diti??s...",
        "hil_flag": true,
        "reason": "Multiple unrecognized characters"
      }
    ],
    "metadata": {
      "pages_requiring_review": 1,
      "total_pages": 2
      }
  }
}

When to Use This Skill

✅ Use DeepRead For:

  • Invoice Processing: Extract vendor, totals, line items
  • Receipt OCR: Parse merchant, items, totals
  • Contract Analysis: Extract parties, dates, terms
  • Form Digitization: Convert paper forms to structured data
  • Document Workflows: Any process requiring OCR + data extraction
  • Quality-Critical Apps: When you need to know which extractions are uncertain

❌ Don't Use For:

  • Real-time Processing: Processing takes 2-5 minutes (async workflow)
  • Batch >2,000 pages/month: Upgrade to PRO or SCALE tier

How It Works

Multi-Pass Pipeline

PDF → Convert → Rotate Correction → OCR → Multi-Model Validation → Extract → Done

The pipeline automatically handles:

  • Document rotation and orientation correction

  • Multi-pass validation for accuracy

  • Cross-model consensus for reliability

  • Field-level confidence scoring


Quality Review (hil_flag)

AI compares extracted text to the original image and sets hil_flag:

  • hil_flag: false = Clear, confident extraction → Auto-process
  • hil_flag: true = Uncertain extraction → Human review required
AI flags extractions when:
  • Text is handwritten, blurry, or low quality
  • Multiple possible interpretations exist
  • Characters are partially visible or unclear
  • Field not found in document
This is multimodal AI determination, not rule-based.

Advanced Features

1. Blueprints (Optimized Schemas)

Create reusable, optimized schemas for specific document types:

# List your blueprints
curl  \
  -H "X-API-Key: $DEEPREAD_API_KEY"

# Use blueprint instead of inline schema
curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@invoice.pdf" \
  -F "blueprint_id=660e8400-e29b-41d4-a716-446655440001"

Benefits:

  • 20-30% accuracy improvement over baseline schemas

  • Reusable across similar documents

  • Versioned with rollback support


How to create blueprints:

# Create a blueprint from training data
curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "name": "utility_invoice",
    "description": "Optimized for utility invoices",
    "document_type": "invoice",
    "initial_schema": {
      "type": "object",
      "properties": {
        "vendor": {"type": "string", "description": "Vendor name"},
        "total": {"type": "number", "description": "Total amount"}
      }
    },
    "training_documents": ["doc1.pdf", "doc2.pdf", "doc3.pdf"],
    "ground_truth_data": [
      {"vendor": "Acme Power", "total": 125.50},
      {"vendor": "City Electric", "total": 89.25}
    ],
    "target_accuracy": 95.0,
    "max_iterations": 5
  }'

# Returns: {"job_id": "...", "blueprint_id": "...", "status": "pending"}

# Check optimization status
curl  \
  -H "X-API-Key: $DEEPREAD_API_KEY"

# Use blueprint (once completed)
curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@invoice.pdf" \
  -F "blueprint_id=BLUEPRINT_ID"

2. Webhooks (Recommended for Production)

Get notified when processing completes instead of polling:

curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@invoice.pdf" \
  -F "webhook_url="

Your webhook receives this payload when processing completes:

{
  "job_id": "550e8400-...",
  "status": "completed",
  "created_at": "2025-01-27T10:00:00Z",
  "completed_at": "2025-01-27T10:02:30Z",
  "result": {
    "text": "...",
    "data": {...}
  },
  "preview_url": ""
}

Benefits:

  • No polling required

  • Instant notification when done

  • Lower latency

  • Better for production workflows


3. Public Preview URLs

Share OCR results without authentication:

# Request preview URL
curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@document.pdf" \
  -F "include_images=true"

# Get preview URL in response
{
  "result": {
    "text": "...",
    "data": {...}
  },
  "preview_url": ""
}

Public Preview Endpoint:

# No authentication required
curl

Rate Limits & Pricing

Free Tier (No Credit Card)

  • 2,000 pages/month
  • 10 requests/minute
  • Full feature access (OCR + structured extraction + blueprints)

Paid Plans

  • PRO: 50,000 pages/month, 100 requests/minute @ $99/mo
  • SCALE: Custom volume pricing (contact sales)
Upgrade:

Rate Limit Headers

Every response includes quota information:

X-RateLimit-Limit: 2000
X-RateLimit-Remaining: 1847
X-RateLimit-Used: 153
X-RateLimit-Reset: 1730419200

Best Practices

1. Use Webhooks for Production

✅ Recommended: Webhook notifications

curl -X POST  \
  -H "X-API-Key: $DEEPREAD_API_KEY" \
  -F "file=@document.pdf" \
  -F "webhook_url="

Only use polling if:

  • Testing/development

  • Cannot expose a webhook endpoint

  • Need synchronous response


2. Schema Design

✅ Good: Descriptive field descriptions

{
  "vendor": {
    "type": "string",
    "description": "Vendor company name. Usually in header or top-left of invoice."
  }
}

❌ Bad: No description

{
  "vendor": {"type": "string"}
}

3. Polling Strategy (If Needed)

Only if you can't use webhooks, poll every 5-10 seconds:

import time
import requests

def wait_for_result(job_id, api_key):
    while True:
        response = requests.get(
            f"",
            headers={"X-API-Key": api_key}
        )
        result = response.json()

        if result["status"] == "completed":
            return result["result"]
        elif result["status"] == "failed":
            raise Exception(f"Job failed: {result.get('error')}")

        time.sleep(5)

4. Handling Quality Flags

Separate confident fields from uncertain ones:

def process_extraction(data):
    confident = {}
    needs_review = []

    for field, field_data in data.items():
        if field_data["hil_flag"]:
            needs_review.append({
                "field": field,
                "value": field_data["value"],
                "reason": field_data.get("reason")
            })
        else:
            confident[field] = field_data["value"]

    # Auto-process confident fields
    save_to_database(confident)

    # Send uncertain fields to review queue
    if needs_review:
        send_to_review_queue(needs_review)

Troubleshooting

Error: quota_exceeded

{"detail": "Monthly page quota exceeded"}
Solution: Upgrade to PRO or wait until next billing cycle.

Error: invalid_schema

{"detail": "Schema must be valid JSON Schema"}
Solution: Ensure schema is valid JSON and includes type and properties.

Error: file_too_large

{"detail": "File size exceeds 50MB limit"}
Solution: Compress PDF or split into smaller files.

Job Status: failed

{"status": "failed", "error": "PDF could not be processed"}
Common causes:
  • Corrupted PDF file
  • Password-protected PDF
  • Unsupported PDF version
  • Image quality too low for OCR

Example Schema Templates

Invoice Schema

{
  "type": "object",
  "properties": {
    "invoice_number": {
      "type": "string",
      "description": "Unique invoice ID"
    },
    "invoice_date": {
      "type": "string",
      "description": "Invoice date in MM/DD/YYYY format"
    },
    "vendor": {
      "type": "string",
      "description": "Vendor company name"
    },
    "total": {
      "type": "number",
      "description": "Total amount due including tax"
    },
    "line_items": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "description": {"type": "string"},
          "quantity": {"type": "number"},
          "price": {"type": "number"}
        }
      }
    }
  }
}

Receipt Schema

{
  "type": "object",
  "properties": {
    "merchant": {
      "type": "string",
      "description": "Store or merchant name"
    },
    "date": {
      "type": "string",
      "description": "Transaction date"
    },
    "total": {
      "type": "number",
      "description": "Total amount paid"
    },
    "items": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "name": {"type": "string"},
          "price": {"type": "number"}
        }
      }
    }
  }
}

Contract Schema

{
  "type": "object",
  "properties": {
    "parties": {
      "type": "array",
      "items": {"type": "string"},
      "description": "Names of all parties in the contract"
    },
    "effective_date": {
      "type": "string",
      "description": "Contract start date"
    },
    "term_length": {
      "type": "string",
      "description": "Duration of contract"
    },
    "termination_clause": {
      "type": "string",
      "description": "Conditions for termination"
    }
  }
}

Support & Resources

  • GitHub:
  • Issues:
  • Email: hello@deepread.tech

Important Notes

  • Processing Time: 2-5 minutes (async, not real-time)
  • Async Workflow: Use webhooks (recommended) or polling
  • Rate Limits: 10 req/min on free tier
  • File Size Limit: 50MB per file
  • Supported Formats: PDF, JPG, JPEG, PNG

Ready to start? Get your free API key at