Notes & PKMDocumentedScanned

penfield

Persistent agent memory with hybrid search (BM25 + vector + graph), knowledge graphs, cognitive context handoffs, and artifact storage via OpenClaw native plugin or Penfield MCP.

Share:

Installation

npx clawhub@latest install penfield

View the full skill documentation and source below.

Documentation

Penfield Memory

Persistent memory that compounds. Your agent remembers conversations, learns preferences, connects ideas, and picks up exactly where it left off—across sessions, days, and channels.

Install

openclaw plugins install openclaw-penfield
openclaw penfield login
openclaw gateway restart

Sign up:

Every Session Starts Here

Always do this first, before anything else:

penfield_awaken()
penfield_reflect({ time_window: "7d" })

awaken loads your identity and personality context. reflect orients you on recent work. Without these, you're starting cold.

Tools

Memory

ToolPurposeWhen to use
penfield_storeSave a memoryUser shares preferences, you make a discovery, a decision is made, you learn something worth keeping
penfield_recallHybrid search (BM25 + vector + graph)Need context before responding, resuming a topic, looking up prior decisions
penfield_searchSemantic search (higher vector weight)Fuzzy concept search when you don't have exact terms
penfield_fetchGet memory by IDFollowing up on a specific memory from recall results
penfield_update_memoryEdit existing memoryCorrecting, adding detail, changing importance or tags

Knowledge Graph

ToolPurposeWhen to use
penfield_connectLink two memoriesNew info relates to existing knowledge, building understanding over time
penfield_exploreTraverse graph from a memoryUnderstanding how ideas connect, finding related context

Context & Analysis

ToolPurposeWhen to use
penfield_save_contextCheckpoint a sessionEnding substantive work, preparing for handoff to another agent
penfield_restore_contextResume from checkpointPicking up where you or another agent left off
penfield_list_contextsList saved checkpointsFinding previous sessions to resume
penfield_reflectAnalyze memory patternsSession start orientation, finding themes, spotting gaps

Artifacts

ToolPurposeWhen to use
penfield_save_artifactStore a fileSaving diagrams, notes, code, reference docs
penfield_retrieve_artifactGet a fileLoading previously saved work
penfield_list_artifactsList stored filesBrowsing saved artifacts
penfield_delete_artifactRemove a fileCleaning up outdated artifacts

Writing Memories That Actually Work

Memory content quality determines whether Penfield is useful or useless. The difference is specificity and context.

Bad — vague, no context, unfindable later:

"User likes Python"

Good — specific, contextual, findable:

"[Preferences] User prefers Python over JavaScript for backend work.
Reason: frustrated by JS callback patterns and lack of type safety.
Values type hints and explicit error handling. Uses FastAPI for APIs."

What makes a memory findable:

  • Context prefix in brackets: [Preferences], [Project: API Redesign], [Investigation: Payment Bug], [Decision]

  • The "why" behind the "what" — rationale matters more than the fact itself

  • Specific details — names, numbers, dates, versions, not vague summaries

  • References to related memories — "This builds on [earlier finding about X]" or "Contradicts previous assumption that Y"
  • Memory Types

    Use the correct type. The system uses these for filtering and analysis.

    TypeUse forExample
    factVerified, durable information"User's company runs Kubernetes on AWS EKS"
    insightPatterns or realizations"Deployment failures correlate with Friday releases"
    correctionFixing prior understanding"CORRECTION: The timeout isn't Redis — it's a hardcoded batch limit"
    conversationSession summaries, notable exchanges"Discussed migration strategy. User leaning toward incremental approach"
    referenceSource material, citations"RFC 8628 defines Device Code Flow for OAuth on input-constrained devices"
    taskWork items, action items"TODO: Benchmark recall latency after index rebuild"
    strategyApproaches, methods, plans"For user's codebase: always check types.ts first, it's the source of truth"
    checkpointMilestone states"Project at 80% — auth complete, UI remaining"
    identity_coreImmutable identity factsSet via personality config, rarely stored manually
    personality_traitBehavioral patternsSet via personality config, rarely stored manually
    relationshipEntity connections"User works with Chad Schultz on cybersecurity content"

    Importance Scores

    Use the full range. Not everything is 0.5.

    ScoreMeaningExample
    0.9–1.0Critical — never forgetArchitecture decisions, hard-won corrections, core preferences
    0.7–0.8Important — reference oftenProject context, key facts about user's work
    0.5–0.6Normal — useful contextGeneral preferences, session summaries
    0.3–0.4Minor — background detailTangential facts, low-stakes observations
    0.1–0.2Trivial — probably don't storeIf you're questioning whether to store it, don't

    Connecting Memories

    Connections are what make Penfield powerful. An isolated memory is just a note. A connected memory is understanding.

    After storing a memory, always ask: What does this relate to? Then connect it.

    Relationship Types (24)

    Knowledge Evolution: supersedes · updates · evolution_of
    Use when understanding changes. "We thought X, now we know Y."

    Evidence: supports · contradicts · disputes
    Use when new information validates or challenges existing beliefs.

    Hierarchy: parent_of · child_of · sibling_of · composed_of · part_of
    Use for structural relationships. Topics containing subtopics, systems containing components.

    Causation: causes · influenced_by · prerequisite_for
    Use for cause-and-effect chains and dependencies.

    Implementation: implements · documents · tests · example_of
    Use when something demonstrates, describes, or validates something else.

    Conversation: responds_to · references · inspired_by
    Use for attribution and dialogue threads.

    Sequence: follows · precedes
    Use for ordered steps in a process or timeline.

    Dependencies: depends_on
    Use when one thing requires another.

    Recall Strategy

    Good queries find things. Bad queries return noise.

    Tune search weights for your query type:

    Query typebm25_weightvector_weightgraph_weight
    Exact term lookup ("Twilio auth token")0.60.30.1
    Concept search ("how we handle errors")0.20.60.2
    Connected knowledge ("everything about payments")0.20.30.5
    Default (balanced)0.40.40.2
    Filter aggressively:
    • memory_types: ["correction", "insight"] to find discoveries and corrections
    • importance_threshold: 0.7 to skip noise
    • enable_graph_expansion: true to follow connections (default, usually leave on)

    Workflows

    User shares a preference

    penfield_store({
      content: "[Preferences] User wants responses under 3 paragraphs unless complexity demands more. Dislikes bullet points in casual conversation.",
      memory_type: "fact",
      importance: 0.8,
      tags: ["preferences", "communication"]
    })

    Investigation tracking

    // Start
    penfield_store({
      content: "[Investigation: Deployment Failures] Reports of 500 errors after every Friday deploy. Checking release pipeline, config drift, and traffic patterns.",
      memory_type: "task",
      importance: 0.7,
      tags: ["investigation", "deployment"]
    })
    
    // Discovery — connect to the investigation
    discovery = penfield_store({
      content: "[Investigation: Deployment Failures] INSIGHT: Friday deploys coincide with weekly batch job at 17:00 UTC. Both compete for DB connection pool. Not a deploy issue — it's resource contention.",
      memory_type: "insight",
      importance: 0.9,
      tags: ["investigation", "deployment", "root-cause"]
    })
    penfield_connect({
      from_memory_id: discovery.id,
      to_memory_id: initial_report.id,
      relationship_type: "responds_to"
    })
    
    // Correction — supersede wrong assumption
    correction = penfield_store({
      content: "[Investigation: Deployment Failures] CORRECTION: Not a CI/CD problem. Friday batch job + deploy = connection pool exhaustion. Fix: stagger batch job to 03:00 UTC.",
      memory_type: "correction",
      importance: 0.9,
      tags: ["investigation", "deployment", "correction"]
    })
    penfield_connect({
      from_memory_id: correction.id,
      to_memory_id: initial_report.id,
      relationship_type: "supersedes"
    })

    Session handoff

    penfield_save_context({
      memory_ids: [discovery.id, correction.id, initial_report.id],
      session_id: "deployment-investigation-2026-02"
    })

    Next session or different agent:

    penfield_restore_context({
      checkpoint_id: "checkpoint-uuid",
      merge_mode: "append"
    })

    What NOT to Store

    • Verbatim conversation transcripts (too verbose, low signal)
    • Easily googled facts (use web search instead)
    • Ephemeral task state (use working memory)
    • Anything the user hasn't consented to store about themselves
    • Every minor exchange (be selective — quality over quantity)

    Tags

    Keep them short, consistent, lowercase. 2–5 per memory.

    Good: preferences, architecture, investigation, correction, project-name
    Bad: 2026-02-02, important-memory-about-deployment, UserPreferencesForCommunicationStyle

    Also Available Outside OpenClaw

    The native OpenClaw plugin is the fastest path, but Penfield works with any AI tool anywhere:

    Claude Connectors

    Name: Penfield
    Remote MCP server URL:

    Claude Code

    Claude mcp add --transport http --scope user penfield

    MCP Server — for Gemini CLI, Cursor, Windsurf, Intent, Perplexity Desktop or any MCP-compatible tool:

    {
      "mcpServers": {
        "penfield": {
          "command": "npx",
          "args": [
            "mcp-remote@latest",
            ""
          ]
        }
      }
    }

    API — direct HTTP access at api.penfield.app for custom integrations.

    Same memory, same knowledge graph, same account. The plugin is 4-5x faster (no MCP proxy layer), but everything stays in sync regardless of how you connect.

    Links

    • Plugin: [openclaw-penfield on npm]()
    • Source: [github.com/penfieldlabs/openclaw-penfield]()
    • Sign up: [portal.penfield.app/sign-up]()
    • Website: [penfield.app]()
    • X: [@penfieldlabs]()