senior-computer-vision
Computer vision engineering skill for object detection, image segmentation, and visual AI systems.
Installation
npx clawhub@latest install senior-computer-visionView the full skill documentation and source below.
Documentation
Senior Computer Vision Engineer
Production computer vision engineering skill for object detection, image segmentation, and visual AI system deployment.
Table of Contents
- Quick Start
- Core Expertise
- Tech Stack
- Workflow 1: Object Detection Pipeline
- Workflow 2: Model Optimization and Deployment
- Workflow 3: Custom Dataset Preparation
- Architecture Selection Guide
- Reference Documentation
- Common Commands
Quick Start
# Generate training configuration for YOLO or Faster R-CNN
python scripts/vision_model_trainer.py models/ --task detection --arch yolov8
# Analyze model for optimization opportunities (quantization, pruning)
python scripts/inference_optimizer.py model.pt --target onnx --benchmark
# Build dataset pipeline with augmentations
python scripts/dataset_pipeline_builder.py images/ --format coco --augment
Core Expertise
This skill provides guidance on:
- Object Detection: YOLO family (v5-v11), Faster R-CNN, DETR, RT-DETR
- Instance Segmentation: Mask R-CNN, YOLACT, SOLOv2
- Semantic Segmentation: DeepLabV3+, SegFormer, SAM (Segment Anything)
- Image Classification: ResNet, EfficientNet, Vision Transformers (ViT, DeiT)
- Video Analysis: Object tracking (ByteTrack, SORT), action recognition
- 3D Vision: Depth estimation, point cloud processing, NeRF
- Production Deployment: ONNX, TensorRT, OpenVINO, CoreML
Tech Stack
| Category | Technologies |
| Frameworks | PyTorch, torchvision, timm |
| Detection | Ultralytics (YOLO), Detectron2, MMDetection |
| Segmentation | segment-anything, mmsegmentation |
| Optimization | ONNX, TensorRT, OpenVINO, torch.compile |
| Image Processing | OpenCV, Pillow, albumentations |
| Annotation | CVAT, Label Studio, Roboflow |
| Experiment Tracking | MLflow, Weights & Biases |
| Serving | Triton Inference Server, TorchServe |
Workflow 1: Object Detection Pipeline
Use this workflow when building an object detection system from scratch.
Step 1: Define Detection Requirements
Analyze the detection task requirements:
Detection Requirements Analysis:
- Target objects: [list specific classes to detect]
- Real-time requirement: [yes/no, target FPS]
- Accuracy priority: [speed vs accuracy trade-off]
- Deployment target: [cloud GPU, edge device, mobile]
- Dataset size: [number of images, annotations per class]
Step 2: Select Detection Architecture
Choose architecture based on requirements:
| Requirement | Recommended Architecture | Why |
| Real-time (>30 FPS) | YOLOv8/v11, RT-DETR | Single-stage, optimized for speed |
| High accuracy | Faster R-CNN, DINO | Two-stage, better localization |
| Small objects | YOLO + SAHI, Faster R-CNN + FPN | Multi-scale detection |
| Edge deployment | YOLOv8n, MobileNetV3-SSD | Lightweight architectures |
| Transformer-based | DETR, DINO, RT-DETR | End-to-end, no NMS required |
Step 3: Prepare Dataset
Convert annotations to required format:
# COCO format (recommended)
python scripts/dataset_pipeline_builder.py data/images/ \
--annotations data/labels/ \
--format coco \
--split 0.8 0.1 0.1 \
--output data/coco/
# Verify dataset
python -c "from pycocotools.coco import COCO; coco = COCO('data/coco/train.json'); print(f'Images: {len(coco.imgs)}, Categories: {len(coco.cats)}')"
Step 4: Configure Training
Generate training configuration:
# For Ultralytics YOLO
python scripts/vision_model_trainer.py data/coco/ \
--task detection \
--arch yolov8m \
--epochs 100 \
--batch 16 \
--imgsz 640 \
--output configs/
# For Detectron2
python scripts/vision_model_trainer.py data/coco/ \
--task detection \
--arch faster_rcnn_R_50_FPN \
--framework detectron2 \
--output configs/
Step 5: Train and Validate
# Ultralytics training
yolo detect train data=data.yaml model=yolov8m.pt epochs=100 imgsz=640
# Detectron2 training
python train_net.py --config-file configs/faster_rcnn.yaml --num-gpus 1
# Validate on test set
yolo detect val model=runs/detect/train/weights/best.pt data=data.yaml
Step 6: Evaluate Results
Key metrics to analyze:
| Metric | Target | Description |
| mAP@50 | >0.7 | Mean Average Precision at IoU 0.5 |
| mAP@50:95 | >0.5 | COCO primary metric |
| Precision | >0.8 | Low false positives |
| Recall | >0.8 | Low missed detections |
| Inference time | <33ms | For 30 FPS real-time |
Workflow 2: Model Optimization and Deployment
Use this workflow when preparing a trained model for production deployment.
Step 1: Benchmark Baseline Performance
# Measure current model performance
python scripts/inference_optimizer.py model.pt \
--benchmark \
--input-size 640 640 \
--batch-sizes 1 4 8 16 \
--warmup 10 \
--iterations 100
Expected output:
Baseline Performance (PyTorch FP32):
- Batch 1: 45.2ms (22.1 FPS)
- Batch 4: 89.4ms (44.7 FPS)
- Batch 8: 165.3ms (48.4 FPS)
- Memory: 2.1 GB
- Parameters: 25.9M
Step 2: Select Optimization Strategy
| Deployment Target | Optimization Path |
| NVIDIA GPU (cloud) | PyTorch → ONNX → TensorRT FP16 |
| NVIDIA GPU (edge) | PyTorch → TensorRT INT8 |
| Intel CPU | PyTorch → ONNX → OpenVINO |
| Apple Silicon | PyTorch → CoreML |
| Generic CPU | PyTorch → ONNX Runtime |
| Mobile | PyTorch → TFLite or ONNX Mobile |
Step 3: Export to ONNX
# Export with dynamic batch size
python scripts/inference_optimizer.py model.pt \
--export onnx \
--input-size 640 640 \
--dynamic-batch \
--simplify \
--output model.onnx
# Verify ONNX model
python -c "import onnx; model = onnx.load('model.onnx'); onnx.checker.check_model(model); print('ONNX model valid')"
Step 4: Apply Quantization (Optional)
For INT8 quantization with calibration:
# Generate calibration dataset
python scripts/inference_optimizer.py model.onnx \
--quantize int8 \
--calibration-data data/calibration/ \
--calibration-samples 500 \
--output model_int8.onnx
Quantization impact analysis:
| Precision | Size | Speed | Accuracy Drop |
| FP32 | 100% | 1x | 0% |
| FP16 | 50% | 1.5-2x | <0.5% |
| INT8 | 25% | 2-4x | 1-3% |
Step 5: Convert to Target Runtime
# TensorRT (NVIDIA GPU)
trtexec --onnx=model.onnx --saveEngine=model.engine --fp16
# OpenVINO (Intel)
mo --input_model model.onnx --output_dir openvino/
# CoreML (Apple)
python -c "import coremltools as ct; model = ct.convert('model.onnx'); model.save('model.mlpackage')"
Step 6: Benchmark Optimized Model
python scripts/inference_optimizer.py model.engine \
--benchmark \
--runtime tensorrt \
--compare model.pt
Expected speedup:
Optimization Results:
- Original (PyTorch FP32): 45.2ms
- Optimized (TensorRT FP16): 12.8ms
- Speedup: 3.5x
- Accuracy change: -0.3% mAP
Workflow 3: Custom Dataset Preparation
Use this workflow when preparing a computer vision dataset for training.
Step 1: Audit Raw Data
# Analyze image dataset
python scripts/dataset_pipeline_builder.py data/raw/ \
--analyze \
--output analysis/
Analysis report includes:
Dataset Analysis:
- Total images: 5,234
- Image sizes: 640x480 to 4096x3072 (variable)
- Formats: JPEG (4,891), PNG (343)
- Corrupted: 12 files
- Duplicates: 45 pairs
Annotation Analysis:
- Format detected: Pascal VOC XML
- Total annotations: 28,456
- Classes: 5 (car, person, bicycle, dog, cat)
- Distribution: car (12,340), person (8,234), bicycle (3,456), dog (2,890), cat (1,536)
- Empty images: 234
Step 2: Clean and Validate
# Remove corrupted and duplicate images
python scripts/dataset_pipeline_builder.py data/raw/ \
--clean \
--remove-corrupted \
--remove-duplicates \
--output data/cleaned/
Step 3: Convert Annotation Format
# Convert VOC to COCO format
python scripts/dataset_pipeline_builder.py data/cleaned/ \
--annotations data/annotations/ \
--input-format voc \
--output-format coco \
--output data/coco/
Supported format conversions:
| From | To |
| Pascal VOC XML | COCO JSON |
| YOLO TXT | COCO JSON |
| COCO JSON | YOLO TXT |
| LabelMe JSON | COCO JSON |
| CVAT XML | COCO JSON |
Step 4: Apply Augmentations
# Generate augmentation config
python scripts/dataset_pipeline_builder.py data/coco/ \
--augment \
--aug-config configs/augmentation.yaml \
--output data/augmented/
Recommended augmentations for detection:
# configs/augmentation.yaml
augmentations:
geometric:
- horizontal_flip: { p: 0.5 }
- vertical_flip: { p: 0.1 } # Only if orientation invariant
- rotate: { limit: 15, p: 0.3 }
- scale: { scale_limit: 0.2, p: 0.5 }
color:
- brightness_contrast: { brightness_limit: 0.2, contrast_limit: 0.2, p: 0.5 }
- hue_saturation: { hue_shift_limit: 20, sat_shift_limit: 30, p: 0.3 }
- blur: { blur_limit: 3, p: 0.1 }
advanced:
- mosaic: { p: 0.5 } # YOLO-style mosaic
- mixup: { p: 0.1 } # Image mixing
- cutout: { num_holes: 8, max_h_size: 32, max_w_size: 32, p: 0.3 }
Step 5: Create Train/Val/Test Splits
python scripts/dataset_pipeline_builder.py data/augmented/ \
--split 0.8 0.1 0.1 \
--stratify \
--seed 42 \
--output data/final/
Split strategy guidelines:
| Dataset Size | Train | Val | Test |
| <1,000 images | 70% | 15% | 15% |
| 1,000-10,000 | 80% | 10% | 10% |
| >10,000 | 90% | 5% | 5% |
Step 6: Generate Dataset Configuration
# For Ultralytics YOLO
python scripts/dataset_pipeline_builder.py data/final/ \
--generate-config yolo \
--output data.yaml
# For Detectron2
python scripts/dataset_pipeline_builder.py data/final/ \
--generate-config detectron2 \
--output detectron2_config.py
Architecture Selection Guide
Object Detection Architectures
| Architecture | Speed | Accuracy | Best For |
| YOLOv8n | 1.2ms | 37.3 mAP | Edge, mobile, real-time |
| YOLOv8s | 2.1ms | 44.9 mAP | Balanced speed/accuracy |
| YOLOv8m | 4.2ms | 50.2 mAP | General purpose |
| YOLOv8l | 6.8ms | 52.9 mAP | High accuracy |
| YOLOv8x | 10.1ms | 53.9 mAP | Maximum accuracy |
| RT-DETR-L | 5.3ms | 53.0 mAP | Transformer, no NMS |
| Faster R-CNN R50 | 46ms | 40.2 mAP | Two-stage, high quality |
| DINO-4scale | 85ms | 49.0 mAP | SOTA transformer |
Segmentation Architectures
| Architecture | Type | Speed | Best For |
| YOLOv8-seg | Instance | 4.5ms | Real-time instance seg |
| Mask R-CNN | Instance | 67ms | High-quality masks |
| SAM | Promptable | 50ms | Zero-shot segmentation |
| DeepLabV3+ | Semantic | 25ms | Scene parsing |
| SegFormer | Semantic | 15ms | Efficient semantic seg |
CNN vs Vision Transformer Trade-offs
| Aspect | CNN (YOLO, R-CNN) | ViT (DETR, DINO) |
| Training data needed | 1K-10K images | 10K-100K+ images |
| Training time | Fast | Slow (needs more epochs) |
| Inference speed | Faster | Slower |
| Small objects | Good with FPN | Needs multi-scale |
| Global context | Limited | Excellent |
| Positional encoding | Implicit | Explicit |
Reference Documentation
1. Computer Vision Architectures
See references/computer_vision_architectures.md for:
- CNN backbone architectures (ResNet, EfficientNet, ConvNeXt)
- Vision Transformer variants (ViT, DeiT, Swin)
- Detection heads (anchor-based vs anchor-free)
- Feature Pyramid Networks (FPN, BiFPN, PANet)
- Neck architectures for multi-scale detection
2. Object Detection Optimization
See references/object_detection_optimization.md for:
- Non-Maximum Suppression variants (NMS, Soft-NMS, DIoU-NMS)
- Anchor optimization and anchor-free alternatives
- Loss function design (focal loss, GIoU, CIoU, DIoU)
- Training strategies (warmup, cosine annealing, EMA)
- Data augmentation for detection (mosaic, mixup, copy-paste)
3. Production Vision Systems
See references/production_vision_systems.md for:
- ONNX export and optimization
- TensorRT deployment pipeline
- Batch inference optimization
- Edge device deployment (Jetson, Intel NCS)
- Model serving with Triton
- Video processing pipelines
Common Commands
Ultralytics YOLO
# Training
yolo detect train data=coco.yaml model=yolov8m.pt epochs=100 imgsz=640
# Validation
yolo detect val model=best.pt data=coco.yaml
# Inference
yolo detect predict model=best.pt source=images/ save=True
# Export
yolo export model=best.pt format=onnx simplify=True dynamic=True
Detectron2
# Training
python train_net.py --config-file configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml \
--num-gpus 1 OUTPUT_DIR ./output
# Evaluation
python train_net.py --config-file configs/faster_rcnn.yaml --eval-only \
MODEL.WEIGHTS output/model_final.pth
# Inference
python demo.py --config-file configs/faster_rcnn.yaml \
--input images/*.jpg --output results/ \
--opts MODEL.WEIGHTS output/model_final.pth
MMDetection
# Training
python tools/train.py configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py
# Testing
python tools/test.py configs/faster_rcnn.py checkpoints/latest.pth --eval bbox
# Inference
python demo/image_demo.py demo.jpg configs/faster_rcnn.py checkpoints/latest.pth
Model Optimization
# ONNX export and simplify
python -c "import torch; model = torch.load('model.pt'); torch.onnx.export(model, torch.randn(1,3,640,640), 'model.onnx', opset_version=17)"
python -m onnxsim model.onnx model_sim.onnx
# TensorRT conversion
trtexec --onnx=model.onnx --saveEngine=model.engine --fp16 --workspace=4096
# Benchmark
trtexec --loadEngine=model.engine --batch=1 --iterations=1000 --avgRuns=100
Performance Targets
| Metric | Real-time | High Accuracy | Edge |
| FPS | >30 | >10 | >15 |
| mAP@50 | >0.6 | >0.8 | >0.5 |
| Latency P99 | <50ms | <150ms | <100ms |
| GPU Memory | <4GB | <8GB | <2GB |
| Model Size | <50MB | <200MB | <20MB |
Resources
- Architecture Guide:
references/computer_vision_architectures.md - Optimization Guide:
references/object_detection_optimization.md - Deployment Guide:
references/production_vision_systems.md - Scripts:
scripts/directory for automation tools