Marketing & SalesDocumentedScanned

social-media-analyzer

Social media campaign analysis and performance tracking.

Share:

Installation

npx clawhub@latest install social-media-analyzer

View the full skill documentation and source below.

Documentation

Social Media Analyzer

Campaign performance analysis with engagement metrics, ROI calculations, and platform benchmarks.


Table of Contents


Analysis Workflow

Analyze social media campaign performance:

  • Validate input data completeness (reach > 0, dates valid)

  • Calculate engagement metrics per post

  • Aggregate campaign-level metrics

  • Calculate ROI if ad spend provided

  • Compare against platform benchmarks

  • Identify top and bottom performers

  • Generate recommendations

  • Validation: Engagement rate < 100%, ROI matches spend data
  • Input Requirements

    FieldRequiredDescription
    platformYesinstagram, facebook, twitter, linkedin, tiktok
    posts[]YesArray of post data
    posts[].likesYesLike/reaction count
    posts[].commentsYesComment count
    posts[].reachYesUnique users reached
    posts[].impressionsNoTotal views
    posts[].sharesNoShare/retweet count
    posts[].savesNoSave/bookmark count
    posts[].clicksNoLink clicks
    total_spendNoAd spend (for ROI)

    Data Validation Checks

    Before analysis, verify:

    • Reach > 0 for all posts (avoid division by zero)
    • Engagement counts are non-negative
    • Date range is valid (start < end)
    • Platform is recognized
    • Spend > 0 if ROI requested

    Engagement Metrics

    Engagement Rate Calculation

    Engagement Rate = (Likes + Comments + Shares + Saves) / Reach × 100

    Metric Definitions

    MetricFormulaInterpretation
    Engagement RateEngagements / Reach × 100Audience interaction level
    CTRClicks / Impressions × 100Content click appeal
    Reach RateReach / Followers × 100Content distribution
    Virality RateShares / Impressions × 100Share-worthiness
    Save RateSaves / Reach × 100Content value

    Performance Categories

    RatingEngagement RateAction
    Excellent> 6%Scale and replicate
    Good3-6%Optimize and expand
    Average1-3%Test improvements
    Poor< 1%Analyze and pivot

    ROI Calculation

    Calculate return on ad spend:

  • Sum total engagements across posts

  • Calculate cost per engagement (CPE)

  • Calculate cost per click (CPC) if clicks available

  • Estimate engagement value using benchmark rates

  • Calculate ROI percentage

  • Validation: ROI = (Value - Spend) / Spend × 100
  • ROI Formulas

    MetricFormula
    Cost Per Engagement (CPE)Total Spend / Total Engagements
    Cost Per Click (CPC)Total Spend / Total Clicks
    Cost Per Thousand (CPM)(Spend / Impressions) × 1000
    Return on Ad Spend (ROAS)Revenue / Ad Spend

    Engagement Value Estimates

    ActionValueRationale
    Like$0.50Brand awareness
    Comment$2.00Active engagement
    Share$5.00Amplification
    Save$3.00Intent signal
    Click$1.50Traffic value

    ROI Interpretation

    ROI %RatingRecommendation
    > 500%ExcellentScale budget significantly
    200-500%GoodIncrease budget moderately
    100-200%AcceptableOptimize before scaling
    0-100%Break-evenReview targeting and creative
    < 0%NegativePause and restructure

    Platform Benchmarks

    Engagement Rate by Platform

    PlatformAverageGoodExcellent
    Instagram1.22%3-6%>6%
    Facebook0.07%0.5-1%>1%
    Twitter/X0.05%0.1-0.5%>0.5%
    LinkedIn2.0%3-5%>5%
    TikTok5.96%8-15%>15%

    CTR by Platform

    PlatformAverageGoodExcellent
    Instagram0.22%0.5-1%>1%
    Facebook0.90%1.5-2.5%>2.5%
    LinkedIn0.44%1-2%>2%
    TikTok0.30%0.5-1%>1%

    CPC by Platform

    PlatformAverageGood
    Facebook$0.97<$0.50
    Instagram$1.20<$0.70
    LinkedIn$5.26<$3.00
    TikTok$1.00<$0.50
    See references/platform-benchmarks.md for complete benchmark data.

    Tools

    Calculate Metrics

    python scripts/calculate_metrics.py assets/sample_input.json

    Calculates engagement rate, CTR, reach rate for each post and campaign totals.

    Analyze Performance

    python scripts/analyze_performance.py assets/sample_input.json

    Generates full performance analysis with ROI, benchmarks, and recommendations.

    Output includes:

    • Campaign-level metrics

    • Post-by-post breakdown

    • Benchmark comparisons

    • Top performers ranked

    • Actionable recommendations



    Examples

    Sample Input

    See assets/sample_input.json:

    {
      "platform": "instagram",
      "total_spend": 500,
      "posts": [
        {
          "post_id": "post_001",
          "content_type": "image",
          "likes": 342,
          "comments": 28,
          "shares": 15,
          "saves": 45,
          "reach": 5200,
          "impressions": 8500,
          "clicks": 120
        }
      ]
    }

    Sample Output

    See assets/expected_output.json:

    {
      "campaign_metrics": {
        "total_engagements": 1521,
        "avg_engagement_rate": 8.36,
        "ctr": 1.55
      },
      "roi_metrics": {
        "total_spend": 500.0,
        "cost_per_engagement": 0.33,
        "roi_percentage": 660.5
      },
      "insights": {
        "overall_health": "excellent",
        "benchmark_comparison": {
          "engagement_status": "excellent",
          "engagement_benchmark": "1.22%",
          "engagement_actual": "8.36%"
        }
      }
    }

    Interpretation

    The sample campaign shows:

    • Engagement rate 8.36% vs 1.22% benchmark = Excellent (6.8x above average)

    • CTR 1.55% vs 0.22% benchmark = Excellent (7x above average)

    • ROI 660% = Outstanding return on $500 spend

    • Recommendation: Scale budget, replicate successful elements



    Reference Documentation

    Platform Benchmarks

    references/platform-benchmarks.md contains:

    • Engagement rate benchmarks by platform and industry
    • CTR benchmarks for organic and paid content
    • Cost benchmarks (CPC, CPM, CPE)
    • Content type performance by platform
    • Optimal posting times and frequency
    • ROI calculation formulas