twitter-search-skill
Advanced Twitter search and social media data analysis.
Installation
npx clawhub@latest install twitter-search-skillView the full skill documentation and source below.
Documentation
Twitter Search and Analysis
Overview
Search Twitter for keywords using advanced search syntax, fetch up to 1000 relevant tweets, and analyze the data to produce professional reports with insights, statistics, and actionable recommendations.
Prerequisites
API Key Required: Users must configure their Twitter API key from
The API key can be provided in three ways:
TWITTER_API_KEY in your ~/.bashrc or ~/.zshrcecho 'export TWITTER_API_KEY="your_key_here"' >> ~/.bashrc
source ~/.bashrc--api-key YOUR_KEY with the wrapper scriptQuick Start
Using the Wrapper Script (Recommended)
The wrapper script automatically handles environment variable loading and dependency checks:
# Basic search (uses TWITTER_API_KEY from shell config)
./scripts/run_search.sh "AI"
# With custom API key
./scripts/run_search.sh "AI" --api-key YOUR_KEY
# With options
./scripts/run_search.sh "\"Claude AI\"" --max-results 100 --format summary
# Advanced query
./scripts/run_search.sh "from:elonmusk since:2024-01-01" --query-type Latest
Direct Python Script Usage
# Search for a keyword
scripts/twitter_search.py "$API_KEY" "AI"
# Search with multiple keywords
scripts/twitter_search.py "$API_KEY" "\"ChatGPT\" OR \"Claude AI\""
# Search from specific user
scripts/twitter_search.py "$API_KEY" "from:elonmusk"
# Search with date range
scripts/twitter_search.py "$API_KEY" "Bitcoin since:2024-01-01"
Advanced Queries
# Complex query: AI tweets from verified users, English only
scripts/twitter_search.py "$API_KEY" "AI OR \"machine learning\" lang:en filter:verified"
# Recent crypto tweets with minimum engagement
scripts/twitter_search.py "$API_KEY" "Bitcoin min_retweets:10 lang:en"
# From specific influencers
scripts/twitter_search.py "$API_KEY" "from:elonmusk OR from:VitalikButerin since:2024-01-01"
Output Format
# Full JSON with all tweets
scripts/twitter_search.py "$API_KEY" "AI" --format json
# Summary with statistics (default)
scripts/twitter_search.py "$API_KEY" "AI" --format summary
Options
--max-results N: Maximum tweets to fetch (default: 1000)--query-type Latest|Top: Sort order (default: Top for relevance)--format json|summary: Output format (default: summary)
Workflow
1. Understand User Requirements
Clarify the analysis goal:
- What topic/keyword to search?
- Date range preference?
- Specific users to include/exclude?
- Language preference?
- Type of insights needed (trends, sentiment, influencers)?
2. Build the Search Query
Use [Twitter Advanced Search]() syntax:
| Syntax | Example | Description |
keyword | AI | Single keyword |
"phrase" | "machine learning" | Exact phrase |
OR | AI OR ChatGPT | Either term |
from:user | from:elonmusk | From specific user |
to:user | to:elonmusk | Reply to user |
since:DATE | since:2024-01-01 | After date |
until:DATE | until:2024-12-31 | Before date |
lang:xx | lang:en | Language code |
#hashtag | #AI | Hashtag |
filter:links | filter:links | Tweets with links |
min_retweets:N | min_retweets:100 | Minimum retweets |
3. Fetch Data
Execute the search script:
scripts/twitter_search.py "$API_KEY" "YOUR_QUERY" --max-results 1000 --query-type Top
Important: Default is 1000 tweets maximum. The script automatically:
- Paginates through all available results
- Stops at 1000 tweets (API limit consideration)
- Handles errors gracefully
4. Analyze and Generate Report
After fetching data, produce a comprehensive professional report with:
Report Structure
- What was searched
- Key findings overview
- Total tweets analyzed
- Date range of data
- Query parameters used
- Total engagement (likes, retweets, replies, quotes, views)
- Average engagement per tweet
- Language distribution
- Reply vs. original tweet ratio
- Most retweeted tweets (with URL links to original tweets)
- Most liked tweets (with URL links to original tweets)
- Top hashtags with frequency
- Most mentioned users
- Selected tweet examples with full URL references
- Top users by follower count
- Most active users
- Verified user percentage
- Emerging themes
- Sentiment indicators
- Temporal patterns
- Conversation drivers
- 3-5 bullet points of core insights
- Data-backed conclusions
- Specific, implementable suggestions
- Based on the data findings
- Prioritized by impact
Analysis Guidelines
- Be data-driven: Every claim should reference actual metrics
- Provide context: Explain why metrics matter
- Identify patterns: Look for trends across the dataset
- Stay objective: Present facts, avoid speculation
- Be specific: Recommendations should be concrete and actionable
- Consider external context: Use web search for background when relevant
5. Output Format
Present the report in clear markdown with:
- Headers for each section
- Tables for structured data
- Bullet points for lists
- Bold for key metrics
- Code blocks for tweet examples
- Clickable URLs for all referenced tweets (format:
[@username]())
Tweet URL Format
Always include clickable links to tweets:
| Author | Tweet | URL |
|--------|-------|-----|
| @user | Summary of tweet content | [View]() |
Or inline format:
- **@username**: Tweet summary - [View Tweet]()
Query Examples by Use Case
Trend Analysis
"AI" OR "artificial intelligence" lang:en min_retweets:50
Competitor Monitoring
from:competitor1 OR from:competitor2 since:2024-01-01
Product Launch Tracking
#ProductName OR "Product Name" lang:en filter:verified
Crisis Monitoring
#BrandName OR "Brand Name" lang:en --query-type Latest
Influencer Discovery
#Topic lang:en min_retweets:100 min_faves:500
Sentiment Analysis
"brand name" OR #BrandName lang:en --max-results 1000
Resources
scripts/run_search.sh (Wrapper Script)
Convenience wrapper that handles environment variable loading and dependency checks:
- Automatically loads
TWITTER_API_KEYfrom~/.bashrcor~/.zshrc - Checks Python availability and installs missing dependencies
- Provides user-friendly error messages
- Supports all command-line options from the Python script
Usage:
./scripts/run_search.sh <query> [options]
Options:
--api-key KEY: Override environment variable API key--max-results N: Maximum tweets to fetch (default: 1000)--query-type Latest|Top: Sort order (default: Top)--format json|summary: Output format (default: json)
scripts/twitter_search.py
Executable Python script that:
- Fetches tweets from Twitter API
- Handles pagination automatically
- Extracts key tweet metrics
- Calculates aggregate statistics
- Outputs structured JSON data
Usage:
scripts/twitter_search.py <api_key> <query> [options]
references/twitter_api.md
Comprehensive API documentation including:
- Complete parameter reference
- Query syntax guide
- Response structure details
- Pagination instructions
- Best practices for analysis
- Error handling guide
Read this when: Building complex queries or understanding data structure.
Tips for Better Analysis
Error Handling
If the script fails:
- Check API key validity
- Verify query syntax
- Ensure network connectivity
- Check rate limits (if applicable)
- Review error messages for specific issues