DevOps & CloudDocumentedScanned
podcast-generation
Generate AI-powered podcast-style audio narratives using Azure OpenAI's GPT Realtime Mini model via WebSocket.
Share:
Installation
npx clawhub@latest install podcast-generationView the full skill documentation and source below.
Documentation
Podcast Generation with GPT Realtime Mini
Generate real audio narratives from text content using Azure OpenAI's Realtime API.
Quick Start
Environment Configuration
AZURE_OPENAI_AUDIO_API_KEY=your_realtime_api_key
AZURE_OPENAI_AUDIO_ENDPOINT=
AZURE_OPENAI_AUDIO_DEPLOYMENT=gpt-realtime-mini
Note: Endpoint should NOT include /openai/v1/ - just the base URL.
Core Workflow
Backend Audio Generation
from openai import AsyncOpenAI
import base64
# Convert HTTPS endpoint to WebSocket URL
ws_url = endpoint.replace("https://", "wss://") + "/openai/v1"
client = AsyncOpenAI(
websocket_base_url=ws_url,
api_key=api_key
)
audio_chunks = []
transcript_parts = []
async with client.realtime.connect(model="gpt-realtime-mini") as conn:
# Configure for audio-only output
await conn.session.update(session={
"output_modalities": ["audio"],
"instructions": "You are a narrator. Speak naturally."
})
# Send text to narrate
await conn.conversation.item.create(item={
"type": "message",
"role": "user",
"content": [{"type": "input_text", "text": prompt}]
})
await conn.response.create()
# Collect streaming events
async for event in conn:
if event.type == "response.output_audio.delta":
audio_chunks.append(base64.b64decode(event.delta))
elif event.type == "response.output_audio_transcript.delta":
transcript_parts.append(event.delta)
elif event.type == "response.done":
break
# Convert PCM to WAV (see scripts/pcm_to_wav.py)
pcm_audio = b''.join(audio_chunks)
wav_audio = pcm_to_wav(pcm_audio, sample_rate=24000)
Frontend Audio Playback
// Convert base64 WAV to playable blob
const base64ToBlob = (base64, mimeType) => {
const bytes = atob(base64);
const arr = new Uint8Array(bytes.length);
for (let i = 0; i < bytes.length; i++) arr[i] = bytes.charCodeAt(i);
return new Blob([arr], { type: mimeType });
};
const audioBlob = base64ToBlob(response.audio_data, 'audio/wav');
const audioUrl = URL.createObjectURL(audioBlob);
new Audio(audioUrl).play();
Voice Options
| Voice | Character |
| alloy | Neutral |
| echo | Warm |
| fable | Expressive |
| onyx | Deep |
| nova | Friendly |
| shimmer | Clear |
Realtime API Events
response.output_audio.delta- Base64 audio chunkresponse.output_audio_transcript.delta- Transcript textresponse.done- Generation completeerror- Handle withevent.error.message
Audio Format
- Input: Text prompt
- Output: PCM audio (24kHz, 16-bit, mono)
- Storage: Base64-encoded WAV
References
- Full architecture: See references/architecture.md for complete stack design
- Code examples: See references/code-examples.md for production patterns
- PCM conversion: Use scripts/pcm_to_wav.py for audio format conversion