DevOps & CloudDocumentedScanned
trust-protocol
Establish, verify, and maintain trust between AI agents.
Share:
Installation
npx clawhub@latest install trust-protocolView the full skill documentation and source below.
Documentation
Agent Trust Protocol (ATP)
Establish, verify, and maintain trust between AI agents. Bayesian trust scoring with domain-specific trust, revocation, forgetting curves, and a visual dashboard.
Install
git clone
# No dependencies beyond Python 3.8+ stdlib
# Pair with skillsign for identity:
Quick Start
# Add an agent to your trust graph
python3 atp.py trust add alpha --fingerprint "abc123" --score 0.7
# Record interactions — trust evolves via Bayesian updates
python3 atp.py interact alpha positive --note "Delivered clean code"
python3 atp.py interact alpha positive --domain code --note "Tests passing"
# Check trust
python3 atp.py trust score alpha
python3 atp.py trust domains alpha
# View the full graph
python3 atp.py status
python3 atp.py graph export --format json
# Run the full-stack demo (identity → trust → dashboard)
python3 demo.py --serve
Commands
Trust Management
atp.py trust add <agent> --fingerprint <fp> [--domain <d>] [--score <0-1>]
atp.py trust list
atp.py trust score <agent>
atp.py trust remove <agent>
atp.py trust revoke <agent> [--reason <reason>]
atp.py trust restore <agent> [--score <0-1>]
atp.py trust domains <agent>
Interactions
atp.py interact <agent> <positive|negative> [--domain <d>] [--note <note>]
Challenge-Response
atp.py challenge create <agent>
atp.py challenge respond <challenge_file>
atp.py challenge verify <response_file>
Graph
atp.py graph show
atp.py graph path <from> <to>
atp.py graph export [--format json|dot]
atp.py status
Dashboard
python3 serve_dashboard.py # localhost:8420
python3 demo.py --serve # full demo + dashboard
Moltbook Integration
python3 moltbook_trust.py verify <agent> # check agent trust via Moltbook profile
How Trust Works
- Bayesian updates: Each interaction shifts trust scores with diminishing deltas (prevents thrashing)
- Negativity bias: Negative interactions hit harder than positive ones boost
- Domain-specific: Trust an agent for code but not for security advice
- Forgetting curves: Trust decays without interaction (R = e^(-t/S))
- Revocation: Immediate drop to floor, restorable at reduced score
- Transitive trust: If you trust A and A trusts B, you partially trust B (with decay)
Integration with skillsign
ATP builds on [skillsign]() for identity: